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Finite-difference solutions of the equations of motion for steady incompressible 
flow around a circular cylinder have been obtained for a range of Reynolds 
numbers from R = 5 to R = 100. The object is to extend the Reynolds number 
range for reliable data on the steady flow, particularly with regard to the growth 
of the wake. The wake length is found to increase approximately linearly with 
R over the whole range from the value, just below R = 7, at which it first appears. 
Calculated values of the drag coefficient, the angle of separation, and the pressure 
and vorticity distributions over the cylinder surface are presented. The develop- 
ment of these properties with Reynolds number is consistent, but it does not 
seem possible to predict with any certainty their tendency as R+m. The first 
attempt to obtain the present results was made by integrating the time- 
dependent equations, but the approach to steady flow was so slow at higher 
Reynolds numbers that the method was abandoned. 

1. Introduction 
Numerical solutions for two-dimensional flow past a circular cylinder can be 

divided into two broad classes. First, there are those obtained by integrating the 
equations of steady motion. Thom (1928) gave the first solution at  R = 10, 
where R is the Reynolds number based on the diameter of the cylinder. Sub- 
sequently Thom (1933) gave a solution at  R = 20 and Kawaguti (1953b), Apelt 
(1961) have both obtained solutions at  R = 40. The general features of all these 
solutions and their development with Reynolds number are in agreement with 
experimental observations. For example, they indicate an approximately linear 
growth with Reynolds number of the standing vortex pair behind the cylinder. 
This is in agreement with the experiments of Taneda (1956). 

On the other hand, solutions given by AlIen & Southwell (1955) over the range 
R = 0 to lo3 and by Dennis & Shimsoni (1965) for the range R = 0.01 to 106 are 
generally thought to be unreliable at  the higher Reynolds numbers. The main 
reason is that both sets of results indicate that the length of the vortex wake 
starts to decrease for some value of the Reynolds number between 10 and 100. 
This effect is most likely to be the result of numerical inaccuracy. Recent calcula- 
tions by Hameliec & Raal (1969) also indicate an ultimate decrease in wake 
length as R increases. The only reliable solutions of the equations of steady 
motion beyond R = 40 appear to be the results of Takami & Keller (1969), in 
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which the Reynolds number range of calculations by Keller & Takami (1966, 
p. 115) has been extended to  R = 60. These results again indicate linear depend- 
ence of wake length on Reynolds number up to R = 60. One of the main objectives 
of the present work has been to  obtain some check on these results and to  extend 
the Reynolds number range. It was found that reliable results could be obtained 

The second class of numerical solutions comes from integrating the time- 
dependent equations of motion. The first solutions for a circular cylinder were 
given by Payne (1958) for R = 40 and 100 and subsequently re-investigated by 
lngham (1968), but Kawaguti & Jain (1966) appear to  have been the first to  have 
continued the integrations for sufficiently large times for a steady flow configura- 
tion to  be reached. Steady solutions were obtained in this way for R = 10 up to  
50, but solutions for R = 60 and 100 were discontinued after a large time and 
before a steady state was reached. The slow rate of approach to the final solution 
for larger values of the Reynolds number seems to be one of the main objections 
to obtaining steady solutions by integrating the time-dependent equations. 
Recent results of Son & Hanratty (1969) at R = 40, 200 and 500 seem to suggest 
that the wake in the cases R = 200, 500 had far from settled down when the 
integrations were stopped. The steady drag value at R = 500 was estimated by 
extrapolation. 

Kawnguti & Jain had previously found it necessary to  estimate steady drag 
values by extrapolation at higher Reynolds numbers. The same slow approach 
to the steady solution was noted when the present solutions were first attempted 
by time-dependent methods. Integrations a t  R = 70 and 100 were discontinued 
after a large time because of the extremely slow build up ofthe wake. It might also 
be noted t h a t  solutions of the equations of steady motion may not be stable for 
these Reynolds numbers (see, for example, Van Dyke 1964, p. 150), and insta- 
bility could tend to  obviate an approach to the steady solution through the time- 
dependent problem. I n  any case, the general evidence seems to suggest that the. 
time-dependent method is not anefficient method of calculating steady solution s 
Its  main use remains as a method of predicting flows which do not tend to  a steady 
state as time increases. Solutions with this principal objective have been obtained 
by Hirota & PvIipkoda (1965) and by Thoman & Szewczyk (1966). 

One of the objects of obtaining numerical solutions for steady flow past a 
cylinder is to attempt to gain information on the nature of the theoretical steady 
flow limit as R-tm. This is still unknown, but various models have been sug- 
gested. A recent review by Roshko (1967) indicates concepts of considerably 
differing nature. The classical model is the discontinuous potential flow theory 
of Kirchhoff as propounded, for example, by Squire (1934) and Kawaguti (1 9 5 3 ~ ) .  
This model gives a finite drag on the cylinder as R+co, with a wake of infinite 
length and zero velocit,y separated from an inviscid region by free streamlines. 
Batchelor (1956) has proposed a limiting solution with a closed wake of finite 
length, containing two regions with uniform vorticity, associated with zero drag 
on the body. Acrivos, Snowden, Grove & Petersen (1965) have suggested that 
the wake remains viscous in character as R-tm, and that its length grows 
linearly with the Reynolds number. This model is based mainly on the results of 

UP to R = 100. 
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experiments in which the wake was stabilized using a splitter plate, thereby 
allowing steady flow patterns to be obtained for Reynolds numbers up to 180. 
Further results in support of the model have been given by Acrivos, Leal, 
Snowden & Pan (1968). 

In the present paper, the results of calculations for R = 5 , 7 , 1 0 , 2 0 ,  40, 70 and 
100 are given. They were obtained by solving finite-difference approximations 
to the equations of steady motion. Reasonable precautions have been taken to 
ensure that the solutions are accurate. The numerical procedures have been 
described fully by Dennis & Chang (1969a, 19693) and will only be summarized. 
The results up to R = 40 are given in order to show the consistent develop- 
ment of the physical properties with Reynolds number. They are in excellent 
agreement with the results of Takami & Keller, and the numerical procedures 
are sufficiently different to provide a completely independent check. The 
development beyond R = 40 is also consistent with Takami & Keller’s solutions 
and to some extent with the model of Acrivos et al., in that the length of the 
wake continues to elongate in proportion to the Reynolds number and its 
breadth remains roughly of the order of the cylinder diameter. 

2. Equations and method of approximation 
The equations are given in dimensionless form, corresponding to a cylinder of 

radius r = 1 in a uniform stream of unit magnitude with its direction that of the 
positive axis of x. Modified polar co-ordinates (&e)  are used, where = log r .  
The equations governing steady motion are: 

Here, $ is the dimensionless stream function and C; is the negative dimensionless 
vorticity. They are defined respectively by the equations $ = @-‘/Ua and 
< = - a c / U ,  where @’ and <’ are the dimensional stream function and vorticity 
for a cylinder of radius a in a uniform stream U .  The Reynolds number is defined 
in the usual way as R = 2aUlv. The flow is assumed to possess symmetry about 
the axis of x, and the boundary conditions necessary to obtain a solution in the 
region 2 0, 0 < 8 < 7r are 

(3) 
$ = - = O  a$ €or [ = O ,  

a t  

[+0 as C+m, ( 5 )  

$ = c = o  for B = o , T .  ( 6 )  

A numerical solution is obtained on the square grid shown in figure 1, which 
also shows the numbering system adopted for a set of points surrounding a 
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typical point 0. The line 5 = Em is taken as an outer boundary on which approxi- 
mations to the conditions at infinity, equations (4) and ( 5 ) ,  may be assumed to 
hold. The numerical method consists of replacing (1) by finite-difference approxi- 
mations on this grid. It is convenient to write 

h(t.8) = - (7)  

o = o  
FIGURE 1. Domain of integration and grid structure. 

The finite-difference equation obtained by replacing derivatives in (1) by the 
simplest possible approximations in central differences at 0 is 

(8) 

Satisfaction of (8) at  every internal grid point of the region O X  Y Z  of figure 1, 
subject to boundary conditions for cat every grid point of the boundary O X Y Z ,  
defines a numerical approximation to the solution of (1). 

Boundary conditions on O X  and Y Z  are given by (B),  and we can take 5 = 0 
on X Y as a crude approximation to (5 ) ,  assuming Crn large enough. An improve- 
ment on this latter boundary condition is given by Dennis & Chang (1969a). The 
approximation = 0 is replaced by, effectively, a gradient condition for 5, on the 
assumption that the flow for & 2 &,,, is governed by Oseen’s linearized equations. 
The details are almost the same as those already published by Dennis, Hudson 
& Smith (1968) and will be mentioned only briefly. The Oseen problem, which 
is valid for large c, is obtained by replacing the derivatives of $ in (1) by the 
expressions obtained from the boundary conditions (4). The equation which 

(1 +hhd d +  (1  +hpo) L+ (1 - h U  L+ (1 -44 6- 4 L  = 0. 
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results can then be solved formally and from the solution it is deduced, provided 
E; is large enough, that 

where x = $Reg. Here, G(8) is a function of 8 alone and thus, if (9) is assumed to 
hold for E; 2 gm, we obtain the approximation 

5(t ,  8 )  G(8) x-4 exp {x(cos 8 - l)}, (9) 

C(E;,@ = 5(t-,m @)exP((X-X,n) (cosd- 1 ) - N - C 7 ? J h  (10) 

where xm is the value of x at E = tm. In  particular, if we put E; = cm + h in (lo), an 
expression for C(tm +h, 8)  in terms of c(tm, 8) is obtained which can be used, in 
a similar manner to a gradient-type boundary condition, to eliminate C1 from (8) 
whenever the point 0 is situated on E; = cm. 

The condition for C on E; = 0 depends upon the solution of ( 2 ) .  It is in the 
method of solution of ( 2 )  and the calculation of boundary values of 6 on E; = 0 
that the present method differs from the usual finite-difference procedure. 
A solution of ( 2 )  is assumed in the form 

which automatically satisfies the conditions for $in (6). Substitution in ( 2 )  gives 

~ & - T z Y .  = r*&(E;) (TZ = 1,2,3,  ...). (12) 

Here, primes denote differentiation with regard to E; and 

From (31 it follows that 

and the equations (12) can be solved as a step-by-step integration, provided 
r,(E;) is known for sufficient values of n (say up to no) on all grid lines of constant 
E; from E; = 0 to 6 = tm. The number no is the number of terms taken to approxi- 
mate the infinite sum in (1 1). One further equation is necessary to complete the 
procedure. It can be deduced from the properties of the solutions of (12). In  
order that (4) shall be satisfied it is necessary that the condition 

r m  

is satisfied, where Sl = 1 and 8, = 0 (n = 2,3,  ...). When the left side of (15) is 
expressed as a numerical quadrature formula over the grid lines of constant 6, 
and with the upper limit approximated by Cm, it gives a formula for rn(0) in terms 
of grid values of r,(E;) for 5 + 0. Thus, the condition (15) is used for calculating 
values of ~ ~ ( 0 ) .  From these values we can calculate C(0,O) from the result 

00 

@, 8 )  = C rn(() sin no, 
n=l 

which follows from (13). In  practice, the summation is again approximated by 
no terms. 
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3. Calculation procedure 
Suppose that a grid size h, a value for tm, and a value for no have been assigned 

for a given Reynolds number. A numerical solution is obtained by repeating the 
following cycle of steps until convergence is achieved. Suppose a starting approxi- 
mation to @ is known and a boundary condition <(O,t?) has been calculated 
from ( l6) ,  using values of r,(O) determined to satisfy (15). Then: 

(i) <(t, 6) is determined by solving the equations (8) subject to the calculated 
boundary condition for <(0,6) and the other specified conditions on the remaining 
boundaries. 

(ii) rn( t ) ,  (n = 1,2,  ..., no) is calculated from (13) for all 6 + 0. 
(iii) r,(O) is calculated to satisfy (15) and hence a new approximation to <(O, 0) 

is found from (16). 
(iv) The equations (12) are solved for n = 1,2,  . . ., no and a new approximation 

to $(& 0) found from (1  1) .  This completes one cycle of the iteration. 
Convergence of the procedure is decided by comparing some representative 

feature of two successive solutions. Many comparisons are possible. The one 
chosen was 

for all n < no, where e is a specified accuracy parameter and m, m + 1 denote two 
successive iterates. This is a very representative convergence test because each 
r,(O), through (13) and then through (15), is calculated from a weighted sum 
involving every value of < (except those on = 0) in the computational field. 
The test ensures, through (16), that the boundary vorticity has converged. One 
of the interesting features of the present method is that the vorticity on the 
cylinder is calculated by integration right throughout the field rather than from 
a few isolated values of @ near t = 0, as is the case in the usual finite-difference 
method of approximating (2). Moreover, equation (16) determines < ( O , O )  as 
a continuous function of 6 more or less regardless of the grid size used in solving 
(1) provided, of course, that it is reasonably small. Features of the flow at the 
cylinder surface, such as the point of separation of the flow, can be determined 
accurately from (16). 

The calculation procedure has been described in more detail by Dennis & Chang 
(19690,1969b) and only two points will be mentioned. The numerical evaluation 
of ~ ~ ( 6 )  from (13) is performed using the method of Filon (1928), since this gives 
uniformly accurate results, even if n is large. Finally, at stage (iii) of the above 
calculation procedure, the new value of <(O, 6 )  is not introduced directly as a new 
boundary condition on OZ. If a previous boundary condition <Crn)(O, 6 )  gives rise, at  
stage (iii), to a calculated value <*(O, O), the actual value introduced in the next 
iteration is 

where 0 < K < 1. This is an empirical process of averaging which may prevent 
divergence of the iterations, by taking K small enough. It has been used in a 
number of the numerical studies cited in the introduction, often in a wider 
context than that used here, where it is applied only to the boundary of the 
cylinder. 

(r(,rnfl)(O) - rp ) (o ) l  < € 

<(rn+”(O, 0) = KC*(O,  0) + (1  - K )  < y o ,  O), 
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Numerical solutions have been obtained for values of the pa,rameters shown 
in table 1. The values of K could possibly be considerably larger; this point has 
not been fully investigated. For each Reynolds number, a numerical solution 
was obtained, using the above iterative method, in which the approximation to 
<(t, 8) ultimately satisfied (8). Then, in order to check the accuracy and improve 

R h 

5 n/40 
7 3/40 
10 z/40 
20 3/40 
40 n/40 
70 3/60 
100 3/60 

n0 

20 
20 
20 
30 
30 
40 
40 

K 

0.05 
0.05 
0-05 
0.05 
0.05 
0.03 
0.015 

TABLE 1. Parameters used in the calculations 

upon it, the difference correction method of Fox (1947) was used to obtain a higher 
approximation to (1). If Lo denotes the left side of (8), a higher approximation 
to (1) which takes into account all central differences up to the fifth can be 
written 

where 
(17) &+KO = 0, 

12Ko = 4(1 +h&) c1 4(1 +h&) C2-k 4(1-h&) '&+ 4(1 -hpo) [ p  

- (1 + 2hho) b - (1 + 2%0) L o -  (1 - 2hho) Cn- (1 - 2hPo) Qz- %o. (18) 

When the grid size is small enough, the correction KO, evaluated using the 
converged solution which satisfies Lo = 0, should be reasonably small everywhere. 
This gives some check that the grid size has been chosen properly. 

An improvement to the solution can be obtained by setting up a new iteration 
which includes the correction. If in the old iteration, without correction, an 
iterate <(")(C, 8)  is obtained by solving the difference equations Lhm) = 0, the new 
iteration consists of solving the equations 

Lh"' + Kg-1' = 0. (19) 

Here, the vector KO is calculated from the previous iterate [("-l)(,$, 8) and held 
fixed during the determination of the new iterate Qrn)(E, 8). Provided the initial 
correction is small enough, the sequence of iterates converges to a limit which 
satisfies (1  7), in which Lo and KO are mutually consistent. 

There is no difficulty in calculating the correction KO a t  any point of the field. 
On grid lines adjacent to 8 = 0 and 8 = T,  the formula (18) involves values of 
6 which lie outside the field of computation OX YZ, but these can be expressed 
in terms of internal values of 5 from the relations 

C ( t 7  - 8)  = - at, 81, a,$, T + 8)  = -at, 7r - Q, 
which hold because the flow is symmetrical about the axis of x. External values 
of < also enter the calculation of KO a t  grid points on X Y  and on the adjacent 



47 8 S. C. R. Dennis and G-2. Chang 

grid line fl  = f l m  - h. In  view of the fact that the boundary condition on f l  = f l m  
rests on the assumption that the flow for fl  2 f l m  is Oseen flow, the necessary 
external values are calculated from ’( 10). Finally, if the typical point 0 is on the 
grid line [ = h, the value Cll is external to the field. In this case 

azC/;lacz + a2C/a02 = 0 when [ = 0 

and hence, approximately, 
Cll = 4<3 - <o - <I3 - C7, 

which enables Q1 to be calculated from internal and boundary values of 5. 
In  the present results, the difference correction method yielded only a small 

change from the solutions computed to satisfy (8). For the lower Reynolds 
numbers the changes in the main physical properties, such as the total drag 
coefficient, were almost negligible while for R = 70 and 100 the properties 
changed by only a few per cent, certainly less than 5 yo. This suggests that the 
final results are of good accuracy, and also that the grid sizes given in table 1 are 
satisfactory. The values of t;, in table 1 which give the position of the outer 
boundary X Y were obtained as the result of experience, as also was the number 
of terms, no, used to approximate the infinite sums on the right sides of (1 1) and 
(16). The effect of varying both of these parameters was studied, and it was 
found that an increase in either parameter beyond the values indicated in the 
table had negligible effect on the computed solution. The whole question of the 
effect of the imposed boundary conditions on [ = f l m  on the internal solution has 
been discussed in detail by Dennis & Chang (1969 a ) .  

4. Results 
Streamlines of the motion for the range R = 5-100 are shown in figure 2. 

Separation has started at R = 7, and the length of the wake, L, from the rear of 
the cylinder to the end of the separated region, grows approximately linearly 
with R over the whole range. The calculated length of the wake is compared with 
other theoretical calculations and with experimental measurements in figure 3. 
It is also given numerically in table 2. There is very good agreement with the 
recent calculations of Takami & Keller up to R = 60, and the same straight-line 
development is continued beyond this by the present results. Kawaguti & Jain’s 
results, obtained by time-dependent methods, appear to be departing from the 
linear relationship after R = 20. Son & Hanratty do not give the steady wake 
length for Reynolds numbers greater than 40. 

Despite good agreement of Kawaguti & Jain with Son & Hanratty for the 
wake length of about L = 5 a t  R = 40, both investigations have used the rather 
coarse grid size n/30 in the 0 direction. This may lead to a spurious lengthening 
of the wake, for a similar effect was observed in an attempt, by present methods, 
to obtain the time-dependent flow a t  R = 100 with a square grid of size ~ 1 4 0 .  
By the time L had reached its steady limit it was almost 22, nearly 11 diameters 
of the cylinder. The vortex pair had also become distorted and fat, very much 
after the manner of Son & Hanratty’s results for R = 200 and 500. A reduction 
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of the grid size to n/60 gave, in essence, the results of figure 2 (g) ,  although it was 
not possible to continue the integrations to the fully steady state. Although 
Son & Hanratty have used a rectangular grid, with considerably smaller grid 
sizes in the 6 direction, the grid size in the t9 direction is rather coarse. In  the wake 
at  large distances, the grid size in the t9 direction dominates the accuracy at  least 
as much as that in the 6 direction. This is evident from the rapid exponential 

0.173 
0.087 pp LO-0017 0.017 3 0 

(4 
FIGURES 2 ( a d ) .  For legend see p. 480. 
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variation of 5 in the 0 direction when ( is large, as indicated by the expression (9) 
obtained from Oseen theory. The variation depends, essentially, on how rapidly 
x( 1 - eos 0) varies with 0 for a given value of x. The grid size in the B direction 
should be small enough to allow representation of the exponential variation 
adequately by finite differences for the largest value of x, x = xm, in the domain 
of the numerical solution. This point has been considered more fully by Dennis 
& Chang (1969a). 

The vorticity vanishes at  the point of separation and it follows from (16) that 
the angle of separation, 0 = 0,, is a root of 

m 

C rn(0) sinno = 0. 
n=l 

1.223 

1.262 

0.258 

cp) 
FIGURE 2. Streamlines for steady flow past a circular cylinder. Values of the dimensionless 
stream function, $, ere shown for each streamline. Values of $ for the closed streamlines, 
$c, are given following the Reynolds number, where appropriate, starting from the centre 
of the wake. (a) R = 5 ;  (a) R = 7 ;  ( c )  R = 10: $c = -0.0002; (d )  R = 20: $rc = -0.008, 
-0-0058; (e) R = 40: +e = -0.0328, -0.0246, -0.0164, -0.0082; (f) R = 70: 
31.c = - 0.07, - 0.06, - 0.035, - 0.023 ; (9) R = 100: @c = - 0.1, - 0.08, - 0.05, - 0.035. 
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FIGURE 3. Calculated and experimental values for the wake length. Numerical solutions : 
0, this study; 0 ,  Takami & Keller (1969) ; A, Kawaguti & Jain (1966) ; + , Apelt (1961) ; 
H, Kawaguti (1953b); 0, Thom (1933). Experimental measurements: A, Acrivos et al. 
(1968): x ,  Taneda (1956). 

R 
5 
7 

10 
20 
40 
70 

100 

L 

0.19 
0.53 
1.88 
4.69 
8.67 

13.11 

15.9 
29.6 
43.7 
53.8 
61.3 
66.2 

Cf ell C D  P(0) 
1.917 2.199 4.116 -1.044 
1'553 1.868 3,421 -0.870 
1'246 1.600 2.846 -0.742 
0.812 1'233 2.045 -0.589 
0.524 0.998 1.522 -0.509 
0.360 0.852 1'212 -0.439 
0'282 0.774 1.056 -0.393 

P(7d 
1.872 
1.660 
1.489 
1.269 
1.144 
1-085 
1.060 

TABLE 2. Calculated properties of the numerical solutions. The angle of 
separation, 68, is given in degrees 

31 FLM 42 
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Calculated values of 8, are given in table 2. They are in extremely good agreement 
with the calculations of Takami & Keller, who give the respective values 
8, = 14.5", 29.3", 43-65', 53.55", 56.6", 59.0" a t  the Reynolds numbers 7, 10, 20, 
40, 50 and 60. Son & Hanratty's value at  R = 40 is 0, = 53-9", while Kawaguti 
&, Jain's is 53.7". Separation first starts to take place at some critical Reynolds 
number between 5 and 7 for which 8, = 0. It may be deduced with the aid of (16) 
that this Reynolds number is that which makes the sum 

B(R) = 5 nr,(O) 
n=l 

vanish. The approximations B(5) = 0.100 and B(7) = - 0.068 are obtained from 
the present results. A linear interpolation suggests the critical Reynolds number 

The dimensionless drag coefficient is defined by C, = D/pU2a, where D is the 
total drag on the cylinder, and p is the density. The total drag may be obtained 
by integrating the total stress component in the direction of x around the surface 
of the cylinder. If  r, is the pressure and, as previously noted, 6' is the dimensional 
scalar vorticitg, then 

as R = 6.2. 

D = - lozT (pvc; sin 8 +po cos 8) a do, 

where v is the coefficient of kinematical viscosity and the subscript zero denotes 
a value at 6 = 0. The second term in the integral may be dealt with conveniently 
by integrating by parts and eliminating the pressure gradient using the equation 
of motion in the direction of 8. It may then be shown that 

The first term on the right gives the friction drag coefficient and the second the 
pressure drag coefficient, denoted respectively by C' and C,. If the result (16) is 
substituted, the simple expressions 

c, = 277T,(O)/R, 

C, = 2n{2r,(0) -v i (O)} /R  

are obtained, where the prime denotes differentiation with regard to g. Actually, 
it was found to be slightly more satisfactory to calculate C, by direct numerical 
evaluation of the second integral in (21) using values of (a</a& obtained by 
numerical differentiation. Calculated drag coefficients are given in table 2 and also 
in figure 4, where the total drag coefficient is compared with other numerical 
results obtained from integrations of the equations of steady motion and with 
the experimental measurements of Tritton (1959). A recent estimate of 
C, = 1.172 at R = 100 has been given by Hameliec & Raal, but the associated 
wake length of L = 9.48 seems much too low and is likely to be due to the fact 
that the boundary 6 = 5, has been taken too close to the cylinder. 

The drag coefficient calculated from (21) enables some check to be made on 
the corresponding numerical solution in view of the fact that the nature of the 



Numerical solutions for steady flow past a circular cylinder 483 

flow a t  large distances is known. From the solution of Imai ( 1  951) it is known 
that, as c+o(), 

@( 5 ,O)  - ec sin 0 - $C,( 1 - Ojn), 

5 -  

4 -  

3 -  
C D  

2 -  

n 

X 
X 

X 
X 

x 

a x  

d 
X 

x x  
0 
' 

eXX 
xx 

X 
Et 

X 

% "  
* x  

xx x"x 

'x b x  
@ % W q  ' #wF> 

1 -  0 

I I I I I l l  I I 1 I I 1 1 1 ~  

3 5 7 10 20 40 70 100 

R 

FIGURE 4. Calculated and experimental values for the total drag coefficient. Numerical 
solutions of the equations of steady motion: 0, this study; 0 ,  Takami & Keller (1969); 
v, Apelt (1961); a, Kawaguti (1953b); 0, Thorn (1933). Experimental measurements: 
x , Tritton (1959). 

except on 6' = 0, where a finite discontinuity exists. It follows that the solution 
of the set of equations (12) must be such t,hat 

f,*(5) - 6, eg - Coim (22) 

where 8, has the meaning already assigned in (15). In  the numerical procedure, 
the coefficient of l /n  on the right side of (22) is not specified, but emerges as the 
result of the calculations. This gives the required check, although it is a stringent 
one and cannot be expected to be satisfied to high precision, since, effectively, 

31-2 
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it checks the balance of outflow and inflow over a very large contour surrounding 
the cylinder. It may be applied to  the numerical solutions, for example, by 
subtracting the exponential term from the right side of (22) when n = 1 and 
comparing the tendency of the remainder, as g increases, with the value obtained 
using (21). 

I n  all the computed results, a tendency consistent with (22) was observed, but 
the precision of the check is hindered by two factors. First, it is not known how 
closely the limiting behaviour should be approached a t  the finite upper limit, 
6 = i&, imposed on a given numerical solution. Further, any attempt to increase 
c7,$ unduly leads to  a fluctuation in the coefficient of l/n in (22) as calculated by 
the numerical integration procedure. This is noticeable only near 5 = and is 
due to the increasingly poor finite-difference approximation to  5 in the wake. 
On the whole, however, the coefficient of l /n as determined from the numerical 
integration was found to approach within about 10% of the theoretical value 
consistent with calculation from (21), which is considered to  be satisfactory in 
view of the two factors mentioned. Some other numerical checks were also carried 
out. For example, the effect of varying the number, no, of terms used to approxi- 
mate the summation on the right side of (11)  was considered. More terms are 
needed as R is increased, but no = 40 is still adequate at R = 100. If we take, as 
an illustration, the variation of wake length with no a t  this Reynolds number 
we find L = 9.12, 12-03 and 12.99 a t  values no = 10, 20, 30. The final value 
(table 2) for no = 40 is L = 13.1. 

One of the possible models for the limiting flow as R -+ 00 is the discontinuous 
potential flow of Kirchhoff type. Imai (1957) has given the large Reynolds 
number formula 

based on this model. Here, a is an unknown constant and C,, is the drag coeffi- 
cient of the limiting Kirchhoff flow. Brodetsky (1923) gives C,, = 0.5 for a 
circular cylinder. On the basis of this value, Takami & Keller have estimated 
a by evaluating it from (23) using their drag values a t  R = 50 and 60, and then 
extrapolating linearly in R-I as R-tw. The value obtained in this way is 
a: = 3.547. A similar procedure carried out with the present values of C, a t  
R = 70  and 100 gives a = 2.99. This discrepancy in estimates of a is a little too 
large to assume any reliable confirmation of the formula (23), and neither value 
of a gives values of C, which compare particularly well with the calculated 
values C, = 0-924 and 0-60 given by Son & Kanratty a t  R = 200 and 500. On 
the other hand, if we assume an asymptotic boundary-layer-type expansion for 
the friction drag in powers of R-4, and fit the first two terms to the present 
results for R = 70 and 100, we obtain 

This not only fits the value at R = 40, but gives respective values C, = 0.18 and 
0.10 at  R = 200 and 500. These compare well with Son & Hanratty’s respective 
values C, = 0.19 and 0.09. 

C$ - Cb, +aR-t (23) 

C, N 1.83R-4 + 9.95R-1. 

The dimensionless pressure coefficient 
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where p0(@ is the pressure on the cylinder surface and p ,  the uniform pressure 
at large distances, is calculated from the formula 

2.0 

1.5 

1 .o 

0.5 

P 

0.0 

- 0.5 

- 1.0 

- 1.5 

8 

FIGURE 5. Pressure coefficient on the cylinder surface. 

Curves of the pressure coefficient are given in figure 5, and its values a t  the rear 
and the front of the cylinder are given in table 2. Both of these values are of 
interest. According to the exact solution for stagnation point flow (see Schlichting 
1960), the coefficient a t  the front of the cylinder should behave, for large Reynolds 
number, like P(n) - l+pR-l, 

where p i s  a constant. Takami & Keller have estimated p = 5.985 by calculation 
from (26) a t  R = 50 and 60, followed by linear extrapolation in R-I as R-too. 

(26) 
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A similar extrapolation from the present results a t  R = 70 and 100 gives 
$ = 6-09, which is in reasonable agreement. 

The variation with R of the pressure coefficient a t  the rear of the cylinder is 
of interest in view of two models which have been proposed for the separated 
flow a t  high Reynolds number. I n  a model suggested by Roshko and by Sychev 
(1967), the behaviour for large Reynolds numbers should be 

P(O) * A R d ,  (27) 

where A is a constant. The model of Acrivos et al. (1.965) suggests that P(0)  
becomes constant as the Reynolds number increases. Recent experimental 
observations of Acrivos et al. (1968) tend to confirm this. It is found that the 

0.15 

0.45 

0.15 

0.45 

0.45 

0.15 

(b) 
FIGURE F. Equi-vorticity lines for steady flow past a circular cylinder. Values of the 
negative dimensionless vorticity, [, are shown for each equi-vorticity line. (a )  R = 70; 
(b )  R = 100. 

observed coefficient tends to  become constant a t  quite moderate values of R, of 
the order of 100. Unfortunately, the results of the present calculations do not 
give any definite information one way or the other. The variation of P(0) is not 
rapid enough to fit (27). Neither is this coefficient obviously approaching a 
constant, at least, certainly not in the range - 0-47 to - 0-43 suggested by the 
experimental results for circular cylinders. This point requires further 
elucidation. 

The variation of vorticity throughout the flow field for Reynolds numbers 
70 and 100 is indicated by equi-vorticity lines in figure 6. For lower Reynolds 
numbers, the vorticity distributions are, in essence, the same as those given by 
Takami & Keller. The dimensionless negative vorticity on the surface of the 
cylinder is shown in figure 7. No reasonable prediction can be made as to  its 
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tendency for large Reynolds number and, in particular, as to the ultimate position 
of the separation point. Son & Hanratty have noted that in their solutions for 
late times, the vorticity near the front stagnation point is significantly less than 
that predicted by boundary-layer theory with the potential solution for the 

10 
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5 4  
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-2  
135" 90" 45" 0" 

e 
FIQURE 7 .  Vorticity distribution over the surface of the cylinder. 

external flow. The same effect has been noted in the present solutions and may 
be indicated as follows. The local coeacient of skin friction is cf = r0/&pU2, where 
T,, is the local shearing stress, and it follows that 

In the neighbourhood of the front stagnation point we put 8 = 7r - 4, and it may 
then be deduced from (16) that, for small 4, 

Cf = 4Rd1C(0, 0). 

where 

R*cf N Sg,  

S(R)  = 4R-4 2 ( -  l)n+lnrT,(0). 
m 

n= 1 
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As .R+co, S(R) should tend to the constant value of approximately 9.861 con- 
sistent with stagnation point flow (Schlichting 1960, p. 153). For the three 
highest Reynolds numbers R = 40, 70 and 100, the series S(R) converges rapidly, 
and we obtain the respective values 

S(R) = 6.59, 6.70, 6-89. 

The discrepancy with boundary-layer flow at  these Reynolds numbers is 
therefore substantial. 

Part of the work described in this paper was carried out while one author 
(S.C.R.D.) was a visitor to the Mathematics Research Centre, U.S. Army, 
University of Wisconsin. A detailed account of the investigation, including full 
details of the numerical method, is given in the report by Dennis &, Chang 
(1969a) which has been cited. Copies of this report can be obtained from the 
Mathematics Research Centre, and a copy has been deposited in the editorial 
office of the Journal of Fluid Mechanics. 

Part of the work was supported by Contract no. DA-31-124-ARO-D-462, and 
part was sponsored by the National Research Council of Canada. The numerical 
calculations were performed on the CDC 3600 of the University of Wisconsin and 
on the IBM 7040 of the University of Western Ontario. 

REFERENCES 

ACRIVOS, A., LEAL, L. G., SNOWDEN, D. D. & PAN, F. 1968 J .  Fluid Mech. 34, 25. 
ACRIVOS, A., SNOWDEN, D. D., GROVE, A. S. & PETERSEN, E. E. 

21, 737. 
ALLEN, D. N. DE G. & SOUTHWELL, R. V. 1955 Quart. J. Mech. Appl. Math. 8, 129. 
APELT, C. J. 1961 Aero. Res. Counc. R. & M .  no. 3175. 
BATCHELOR, G. K. 1956 J .  Fluid Mech. 1, 388. 
BRODETSKY, S. 1923 Proc. Roy. SOC. A 102, 542. 
DENNIS, S. C. R. & CHANG, G. Z. 1969a Mathematics Research Centre, U.S. Army, MadisotL, 

DENNIS, S. C. R. & CHANG, G. Z. 1969 Phys. Fluids Suppl. 11, 12, 11-88. 
DENNIS, S. C. R., HUDSON, J. D. & SMITH, N. 1968 Phys. Fluids, 11, 933. 
DENNIS, S. C. R. & SHIMSHOM, M. 1965 Aero. Res. Gounc. Current Paper, no. 797. 
FILON, L. N. G. 1928 Proc. Roy. SOC. Edinb. 49, 38. 
Fox, L. 1947 Proc. Roy. SOC. A 190, 31. 
HAMIELEX, A. E. & RAAL, J. D. 1969 Phys. Fluids, 12, 11. 
HIROTA, I. & MIYAKODA, K. 1965 J .  Met. SOC. Japan, Ser. 11, 43, 30. 
IMAI, I. 1951 Proc. Roy. SOC. A208, 487. 
IMAI, I. 1957 University of Maryland Tech. Note, no. BN-104. 
INGHAM, D. B. 1968 J .  Fluid Mech. 31, 815. 
KAWAGUTI, M. 1953a J .  Phys. SOC. Japan, 8, 403. 
KAWAGUTI, M. 19536 J. Phys. SOC. Japan, 8, 747. 
KAWAGUTI, M. & JAIN, P. 1966 J. Phys. SOC. Japan, 21, 2055. 
KELLER, H. B. & TAKAMI, H. 1966 In  Numerical Solutions of NonlirLeay Di’erential 

PAYNE, R. B. 1958 J. FZuid Mech. 4, 81. 
ROSHKO, A. 1967 Proc. Canadian Congress of Applied Mechanics, 3, 81. 

1965 J .  Fluid Mech. 

Wisconsin, Technical Summary Report, no. 859. 

Equations. (Ed. D. Greenspen.) Englewood Cliffs, N.J. : Prentice-Hall. 



Numerical solutions for stead9 $ow past a circular cylinder 489 

SCHLICHTING, H. 1960 Boundary Layer Theory. New York: McGraw-Hill. 
SON, J. S. & HANRATTY, T. J. 1969 J .  Fluid Mech. 35, 369. 
SQUIRE, H. B. 1934 Phil. Mag. 17, 1150. 
SYCHEV, V. V. 1967 Symposium on Modern Problems in Fluid and Gas Dynamics. Tarda, 

TAKAMI, H. Q KELLER, H. B. 1969 Phys. Fluids Suppl. 11, 12, 11-51. 
TANEDA, S. 1956 J .  Phys. SOC. Japan, 11, 302. 
THOM, A. 1928 Aero. Res. Counc. R. & M .  no. 1194. 
THOM, A. 1933 Proc. Roy. SOC. A 141, 651. 
THOMAN, D. C. & SZEWCZYK, A. A. 1966 Heat Transfer and Fluid Mech. Lab., University 

of Notre Dame Tech. Rep. no. 66-14. 
TRITTON, D. J. 1959 J .  Fluid Mech. 6, 547. 
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic. 

Poland. 


